Computing the L 1 Geodesic Diameter and Center of a Simple Polygon in Linear Time
نویسندگان
چکیده
In this paper, we show that the L1 geodesic diameter and center of a simple polygon can be computed in linear time. For the purpose, we focus on revealing basic geometric properties of the L1 geodesic balls, that is, the metric balls with respect to the L1 geodesic distance. More specifically, in this paper we show that any family of L1 geodesic balls in any simple polygon has Helly number two, and the L1 geodesic center consists of midpoints of shortest paths between diametral pairs. These properties are crucial for our linear-time algorithms, and do not hold for the Euclidean case.
منابع مشابه
Computing the Geodesic L 1 -diameter and Center of a Simple Rectilinear Polygon
The diameter of a set S of points is the maximal distance between a pair of points in S. The center of S is the set of points that minimize the distance to their furthest neighbours. The problem of nding the diameter and center of a simple polygon with n vertices for diierent distance measures has been studied extensively in recent years. There are algorithms that run in linear time if the geod...
متن کاملL_1 Geodesic Farthest Neighbors in a Simple Polygon and Related Problems
In this paper, we investigate the L1 geodesic farthest neighbors in a simple polygon P , and address several fundamental problems related to farthest neighbors. Given a subset S ⊆ P , an L1 geodesic farthest neighbor of p ∈ P from S is one that maximizes the length of L1 shortest path from p in P . Our list of problems include: computing the diameter, radius, center, farthestneighbor Voronoi di...
متن کاملComputing the Geodesic Center of a Simple Polygon
The geodesic center of a simple polygon is a point inside the polygon which minimizes the maximum internal distance to any point in the polygon. We present an algorithm which calculates the geodesic center of a simple polygon with n vertices in time O(n log n).
متن کاملComputing Geodesic Furthest Neighbors in Simple Polygons
An algorithm is presented for computing geodesic furthest neighbors for all the vertices of a simple polygon, where geodesic denotes the fact that distance between two points of the polygon is defined as the length of an Euclidean shortest path connecting them within the polygon. The algorithm runs in O(n log n) time and uses O(n) space; n being the number of vertices of the polygon. As a corol...
متن کاملThe Geodesic Diameter of Polygonal Domains
This paper studies the geodesic diameter of polygonal domains having h holes and n corners. For simple polygons (i.e., h = 0), it is known that the geodesic diameter is determined by a pair of corners of a given polygon and can be computed in linear time. For general polygonal domains with h ≥ 1, however, no algorithm for computing the geodesic diameter was known prior to this paper. In this pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comput. Geom.
دوره 48 شماره
صفحات -
تاریخ انتشار 2014